View Single Post
Old 01-28-2020, 04:33 PM   #2
Second Series
Registered User
 
Second Series's Avatar
 
Join Date: May 2015
Location: Tukwila Washington
Posts: 373
Re: Mechanical speedometer drive solution

This is a screen shot of the oscilloscope, the truck is idling in 2nd gear at 10mph(on jackstands).
Channel 1 is the 2000ppm
Channel 3 is the 40 tooth Reluctor Ring that produces 40 pulses per driveshaft revolution.
Looking at the ch.1 2000ppm signal, one cycle is about 7 horizontal divisions. The time is set at 25ms.
The period of one cycle is 7 x 25ms= 175ms, Frequency = 1/period, so 1/175ms, or 1/.175 = 5.71Hz
This is close to the reading on another screenshot of 5.1Hz, so the math is correct.
60mph = 1 mile per minute, 10mph = 0.1666 miles per minute (10mph/60minutes = 0.1666) so 0.1666 x 60 = 10. And 1 mile in 6 minutes
2000ppm at 5.71Hz, or 5.71 cycles per second x 60 = 342.6 cycles per minute, or 342.6 pulses per minute 342.6 x 60 = 20,556 pulses per hour. At 10mph, 20,556/10= 2,055.6ppm. With some margin of error, close to 2000ppm. So for 10mph, the vehicle travels 1 mile in 6 minutes, and at (2000ppmile/6minutes) = 333.333ppminute. Thus at 10mph the vehicle travels for 1 minute a distance of 0.1666 miles with 333.333pulses. Let’s check this: 333.333ppminute/60seconds = 5.555cps, or 5.555Hz, that’s close to the measured 5.71Hz.
At 60mph the vehicle travels 1 mile in 1 minute and 2000ppmile. 2000ppm/60seconds = 33.333Hz
At 20mph take 60minutes/20mph = 3, the vehicle travels 1 mile in 3 minutes. At 2000ppm/3minutes = 666.666ppminute. 666.666ppminute/60seconds=11.111Hz So at 20mph, the vehicle travels .333 miles in 1 minute with a fequency of 11.11Hz on the 2000ppm signal.
With this math, a chart can be produced for the 2000ppm signal:
Attached Images
 
__________________
'47 Panel to '88 K2500 Frame Swap
Mechanical Speedometer Drive Solution
1947.2 1 ton Chevy Panel
1955.2 Chevy 6700 Bus/RV
1990 Chevy K1500
Second Series is offline   Reply With Quote